农资网> 技术 >正文

植物激素与植物生长调剂的正确认识

发布时间:2024-10-26 09:47:49 来源:农资网 编辑:郑钦文 本文有6305个字,大约阅读时间16分钟

我们先一起了解一个概念,什么是植物激素,什么是植物生长调节剂。

植物激素:指植物体内各器官分泌的一些数量微少而效应很大的有机物质,也称内源激素,它从特定的器官形成后,就地或运输到别的部位发挥生理作用,调节植物的生长发育过程。
植物生长调节剂:指通过化学合成和微生物发酵等方式研究并生产出的一些与天然植物激素有类似生理和生物学效应的化学物质,也称为外源激素。
两者在化学结构上可以相同,也可能有很大不同,不过其生理和生物学效应基本相同。有些植物生长调节剂本身就是植物激素。
在农资行业中,我们谈到的“激素”一般都是指合成的植物生长调节剂。有那么几年,甚至到现在,在一些地方,农户和经销商还都处于一种“谈激色变”的状态,对激素特别的恐慌。主要原因是因为前些年,大家把激素给用烂了,大量的无节制的使用,造成了很多药害和损失,当然也因为我们对激素的不了解,尤其有些激素会对某些作物造成损害。以至于,大家现在都特别害怕使用激素,造成了对激素的一个错误的认知。
借用某大学教授的一句话:如果没有激素就不可能有反季节蔬菜。
所以,我们对于激素还是应该有一个正确的认识的,只要合理使用,不滥用,不盲目的使用,用对时期增产增收效果还是比较明显的。今天,每天农资小默和大家一起来了解了解这些激素,推荐一篇关于植物生长调节剂和植物激素的文章,篇幅比较长,建议大家可以收藏到朋友圈,多看几遍,看完以后就知道激素和调节剂到底咋用了。
常见的内源激素(植物自身生产的)有五种
一、生长素:代号为IAA。
生长素是最早被发现的植物激素,包括吲哚乙酸(IAA)、4-氯-IAA、5-羟-IAA、萘乙酸等。现在,人们习惯于把吲哚乙酸等同与生长素。
生长素有多方面的生理效应,这与其浓度有关。生长素的生理效应表现在两个层次上。
在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
生长素具体的生理效应表现为:
第一、 促进生长。
生长素在较低的浓度下可促进生长,而高浓度时则抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。另外,不同器官对生长素的敏感性不同。
第二、促进插条不定根的形成。
用生长素类物质促进插条形成不定根的方法已在苗木的无性繁殖上广泛应用。
第三、 对养分的调运作用。
生长素具有很强的吸引与调运养分的效应,利用这一特性,用生长素处理,可促使子房及其周围组织膨大而获得无子果实。
第四、 生长素的其他效应。
例如促进菠萝开花、引起顶端优势(即顶芽对侧芽生长的抑制)、诱导雌花分化(但效果不如乙烯)、促进形成层细胞向木质部细胞分化、促进光合产物的运输、叶片的扩大和气孔的开放等。此外,生长素还可抑制花朵脱落、叶片老化和块根形成等。
二、赤霉素:代号为GA。
赤霉素是主要促进节间生长的植物激素。
赤霉素的生理效应为:
第一、促进茎的伸长生长。
这主要是能促进细胞的伸长。用赤霉素处理,能显着促进植株茎的伸长生长,特别是对矮生突变品种的效果特别明显;还能促进节间的伸长。不存在超最适浓度的抑制作用,即使赤霉素浓度很高,仍可表现出最大的促进效应,这与生长素促进植物生长具有最适浓度的情况显着不同。不同植物品种对赤霉素的反应有很大的差异。在蔬菜(芹菜、莴苣、韭菜)、牧草、茶叶和苎麻等作物上使用可获得高产。
第二、 诱导开花。
某些高等植物花芽的分化是受日照长度和温度影响的。若对这些未经春化的植物施用赤霉素,则不经低温过程也能诱导开花,且效果很明显。此外,赤霉素也能代替长日照诱导某些长日照植物开花,但赤霉素对短日植物的花芽分化无促进作用。对花芽已经分化的植物,赤霉素对其花的开放具有显着的促进效应。如赤霉素能促进甜叶菊、铁树及柏科、衫科植物的开花。
第三、打破休眠。
对于需光和需低温才能萌发的种子,如莴苣、烟草、紫苏、李和苹果等的种子,赤霉素可代替光照和低温打破休眠。
第四、 促进雄花分化。
对于雌雄异花的植物,用赤霉素处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用赤霉素处理,也会开出雄花。赤霉素在这方面的效应与生长素和乙烯相反。
第五、其他生理效应。
赤霉素还可以加强生长素对养分的动员效应,促进某些植物坐果和单性结实、延缓叶片衰老等。此外,赤霉素也可以促进细胞的分裂和分化,赤霉素对不定根的形成起抑制作用,这与生长素相反。
三、细胞分裂素:其代号为CTK。
细胞分裂素是一类具有腺嘌呤环结构的植物激素。它们的生理功能突出地表现在促进细胞分裂和诱导芽形成。
细胞分裂素有多种生理效应。其生理效应表现为:
第一、促进细胞分裂,细胞分裂素的主要生理功能就是促进细胞的分裂。
生长素、赤霉素和细胞分裂素都有促进细胞分裂的效应,但他们各自所起的作用不同。生长素只促进核的分裂,而与细胞质的分裂无关。而细胞分裂素主要是对细胞质的分裂起作用。
第二、促进芽的分化。
促进芽的分化是细胞分裂素重要的生理效应之一,有些离体叶细胞分裂素处理后主脉基部和叶缘都能产生芽。
第三、促进细胞扩大。
细胞分裂素可促进一些双子叶植物如菜豆、萝卜的子叶或叶圆片扩大,这种扩大主要是因为促进了细胞的横向增粗。
第四、促进侧芽发育,消除顶端优势。
细胞能解除由生长素所引起的顶端优势,促进侧芽生长发育。如豌豆苗若以细胞分裂素溶液滴加于叶腋部位,腋芽则可生长发育。
第五、延缓叶片衰老。
如果在离体叶片上局部涂以细胞分裂素,则叶片其余部位变黄衰老时,涂抹激动素的部位仍保持鲜绿。由于细胞分裂素有保绿及延缓衰老等作用,故可用来处理水果和鲜花等以保鲜、保绿,防止落果。例如用细胞分裂素处理柑橘幼果,可显着防止落果,而且果梗加粗,果实浓绿,果个也比对照显着增大。
第六、打破种子休眠。
需光种子,如莴苣和烟草等在黑暗中不能萌发,用细胞分裂素则可代替光照打破这类种子的休眠,促进其萌发。
四、脱落酸:代号为ABA。
1963年,美国的Addicott等在研究棉花蕾铃脱落时,发现一种能引起脱落的活性强的化合物,命名为脱落素Ⅱ(abscisinⅡ)。同一年,英国的Wareing等研究引起桦树、槭树休眠的化合物,从这些树的叶子中分离出一种能诱导休眠的活性物质,命名为休眠素(dormin)。1964年,证明脱落素Ⅱ和休眠素是同一种化合物,1965年,其化学结构式被确定。1967年在第六次国际植物生长物质会议上,把这种化合物统一命名为脱落酸(abscisicacid,简称ABA)。
脱落酸的生理功能有以下几种:
第一、促进休眠。
外用ABA时,可使旺盛生长的枝条停止生长而进入休眠,这是它最初也被称为"休眠素"的原因。在秋天的短日条件下,叶中甲瓦龙酸合成GA的量减少,而合成的ABA量不断增加,使芽进入休眠状态以便越冬。种子休眠与种子中存在脱落酸有关,如桃、蔷薇的休眠种子的外种皮中存在脱落酸,所以只有通过层积处理,脱落酸水平降低后,种子才能正常发芽。
第二、 促进气孔关闭。
ABA可引起气孔关闭,降低蒸腾,这是ABA最重要的生理效应之一。科尼什(K.Cornish,1986)发现水分胁迫下叶片保卫细胞中的ABA含量是正常水分条件下含量的18倍。ABA促使气孔关闭的原因是它使保卫细胞中的K+外渗,从而使保卫细胞的水势高于周围细胞的水势而失水。ABA还能促进根系的吸水与溢泌速率,增加其向地上部的供水量,因此ABA是植物体内调节蒸腾的激素,也可作为抗蒸腾剂使用。
第三、 抑制生长。
ABA能抑制整株植物或离体器官的生长,也能抑制种子的萌发。ABA的抑制效应比植物体内的另一类天然抑制剂--酚要高千倍。酚类物质是通过毒害发挥其抑制效应的,是不可逆的,而ABA的抑制效应则是可逆的,一旦去除ABA,枝条的生长或种子的萌发又会立即开始。
第四、促进脱落。
ABA是在研究棉花幼铃脱落时发现的。ABA促进器官脱落主要是促进了离层的形成。将ABA涂抹于去除叶片的棉花外植体叶柄切口上,几天后叶柄就开始脱落,此效应十分明显,已被用于脱落酸的生物检定。
第五、增加抗逆性。
一般来说,干旱、寒冷、高温、盐渍和水涝等逆境都能使植物体内ABA迅速增加,同时抗逆性增强。如ABA可显着降低高温对叶绿体超微结构的破坏,增加叶绿体的热稳定性;ABA可诱导某些酶的重新合成而增加植物的抗冷性、抗涝性和抗盐性。因此,ABA被称为应激激素或胁迫激素(stress hormone)。
五、乙烯:代号为ACC。
乙烯是一种气态激素。几乎所有高等植物的组织都能产生微量乙烯。干旱、水涝、极端温度、化学伤害、和机械损伤都能刺激植物体内乙烯增加,称为“逆境乙烯”,会加速器官衰老、脱落。萌发的种子、果实等器官成熟、衰老和脱落时组织中乙烯含量很高。高浓度生长素促进乙烯生成。乙烯抑制生长素的合成与运输。
乙烯的生理效应具体为:
第一、 改变生长习性。
乙烯对植物生长的典型效应是:抑制茎的伸长生长、促进茎或根的横向增粗及茎的横向生长(即使茎失去负向重力性),这就是乙烯所特有的"三重反应"(triple response) 乙烯促使茎横向生长是由于它引起偏上生长所造成的。所谓偏上生长,是指器官的上部生长速度快于下部的现象。乙烯对茎与叶柄都有偏上生长的作用,从而造成了茎横生和叶下垂。
第二、 促进成熟。
催熟是乙烯最主要和最显着的效应,因此乙烯也称为催熟激素。乙烯对果实成熟、棉铃开裂、水稻的灌浆与成熟都有显着的效果。
在实际生活中我们知道,一旦箱里出现了一只烂苹果,如不立即除去,它会很快使整个一箱苹果都烂掉。这是由于腐烂苹果产生的乙烯比正常苹果的多,触发了附近的苹果也大量产生乙烯,使箱内乙烯的浓度在较短时间内剧增,诱导呼吸跃变,加快苹果完熟和贮藏物质消耗的缘故。又如柿子,即使在树上已成熟,但仍很涩口,不能食用,只有经过后熟过程后才能食用。由于乙烯是气体,易扩散,故散放的柿子后熟过程很慢,放置十天半月后仍难食用。若将容器密闭(如用塑料袋封装),果实产生的乙烯就不会扩散掉,再加上自身催化作用,后熟过程加快,一般5天后就可食用了。
第三、促进脱落。
乙烯是控制叶片脱落的主要激素。这是因为乙烯能促进细胞壁降解酶--纤维素酶的合办成并且控制纤维素酶由原生质体释放到细胞壁中,从而促进细胞衰老和细胞壁的分解,引起离区近茎侧的细胞膨胀,从而迫使叶片、花或果实机械地脱离。
第四、促进开花和雌花分化。
乙烯可促进菠萝和其它一些植物开花,还可改变花的性别,促进黄瓜雌花分化,并使雌、雄异花同株的雌花着生节位下降。乙烯在这方面的效应与IAA相似,而与GA相反,现在知道IAA增加雌花分化就是由于IAA诱导产生乙烯的结果。
第五、乙烯的其它效应。
乙烯还可诱导插枝不定根的形成,促进根的生长和分化,打破种子和芽的休眠,诱导次生物质(如橡胶树的乳胶)的分泌等。
植物生长调节剂
随着对植物内源激素的研究,人们也在不断地用人工合成的方法制成一些具有植物激素活性的类似物用于农业的生产中,这就是植物生长调节剂,也叫外源激素。植物生长调节剂与内源激素相比,其生理效应针对性、目的性更强。其分为如下几大类。
根据植物生长调节剂在农业生产中所发挥的作用可以把植物生长调节剂可分为五大类,分别是:植物生长促进剂、植物生长抑制剂、植物生长延缓剂、保鲜剂、抗旱剂。
今天只给大家介绍植物生长促进剂。
植物生长促进剂(外源激素、合成激素)的种类和主要作用
能够促进植物细胞分裂、分化和延长生长的化合物都属于生长促进剂,它们能促进植物营养器官的生长和生殖器官的发育。这是植物生长调节剂种类最多﹑应用最为广泛的一类。
赤霉素(GA)其它名称 九二0,GA
农业生产中用到的产品制剂多为85%赤霉素结晶粉,4%赤霉素乳油,40%水溶性片剂,40%水溶性粉剂。
外源赤霉素进入植物体内,具有内源赤霉素同样的生理作用。赤霉素主要经叶片、嫩枝、花、种子或果实进入到植物体内,然后传导到生长活跃的部位起作用。赤霉素在农、林、园艺上使用极为广泛。
萘乙酸(NAA)
常见的制剂为 80%原粉,市售剂型还有99%精制粉剂、2%钠盐水剂、2%钾盐水剂、4.2%萘乙酸水剂。
萘乙酸是类生长素物质,是一种广谱性植物生长调节剂。对植物的主要作用是促进细胞分裂和扩大,诱导形成不定根,增加坐果,防止落果,改变雌雄花比率,并能促进植物的新陈代谢和光合作用,加速生长发育及增强抗性等。萘乙酸由叶片、树枝的嫩表皮、种子进入植物体内,随营养流输导至作用的部位。
生长素(IAA)其它名称 吲哚乙酸,异生长素,茁长素3-吲哚乙酸等
农业生产中用到的产品制剂多为粉剂,可湿性粉剂,为人工合成产品加辅料而成。
人工合成的可经由茎、叶和根系吸收,由于施用浓度不同,既可起促进作用,也可起抑制作用。
2,4-D 其他名称 坐果灵,防落素
常见的剂型为80%可湿性粉剂,72%丁酯乳油,55%、50%胺盐水剂。
2,4-D随使用浓度和用量不同,对植物可产生多种不同的效应:在较低浓度(0.5-1.0mg/L)下是植物组织培养的培养基成分之一;在中等浓度(1-25mg/L)下可防止落花落果,能有效刺激生长,诱导无籽果实和果实保鲜等作用;更高浓度(1000mg/L)下作为除草剂可杀死多种阔叶杂草。因此在对作物施用时一定要注意所用的量。较高浓度,抑制生长,更高浓度可使植物畸形发育致死。作为芽后使用的除草剂,单子叶的禾本植物对其一定的耐受力,双子叶的阔叶植物对其非常敏感,利用这种选择性,可用于水稻、麦类禾本科作物田间防除阔叶杂草。50%2,4-D胺盐在200ml/亩,剂量下药后20天,对柑桔园的水花生、律草、鸟蔹莓、铁苋菜、繁缕、酢浆草、地锦、刺儿草、打碗花等阔叶杂草有极好的防效,除草效果为92.5%-100%。对一年蓬、凹头苋、苍耳、有氏蓼也有较好的防治,药效在80%左右。防效偏低可能与上述四种杂草草龄较高,大多已开花结果有关。在参试剂量下50%2,4-D胺盐对柑桔树安全。
激动素(KT)其它名称 KT,动力精
激动素的化学名称6-糠基氨基嘌呤,分子式C10H9N5O。一般由6-氯嘌呤与呋喃甲基胺缩合而成。不溶于水,溶于强酸、碱及冰醋酸中。是第一个被发现具有细胞分裂素作用的物质,首次从脱氧核糖核酸降解产物中提出。在组织培养的情况下,激动素浓度低地方可促进根的分化,在浓度高的地方则有枝叶芽的分化,其中间浓度可显着地促进胞质分裂而形成癒伤组织块。激动素显有抑制衰老的作用,特别是对分离的成熟叶片,用激动素处理,发现它可抑制叶绿素、蛋白质、核酸等含量的降低,也能推迟细胞结构的破坏。延缓蛋白质和叶绿素的降解,延迟植物衰老,可用于果蔬保鲜。
膨大剂
氯吡苯脲 属苯脲类物质,主要是刺激细胞分裂素的物质,是一种高活性的化合物,具有细胞分裂素活性,可促进细胞分裂和扩大,施用在瓜果植物上,可促进花芽分化,保花保果,提高坐果率、促进果实膨大。
乙烯利
乙烯利化学名称为2-氯乙基膦酸,常见的制剂为 40%乙烯利水剂。
乙烯利本身并没有生理活性,释放的乙烯是一种具有多种生理功能的植物激素,已经明确的生理效应有:促进果实生理成熟(目前生产上为了提早香蕉、柑橘、桃子、番茄等水果的上市时间,普遍使用乙烯利处理),促进叶片衰老和脱落,促进种子发芽和植株开花,促进根和苗的生长。如果施用不当会叶片、果实的脱落,矮化植株,改变雌雄的比率,诱导某些作物雄性不育等。
DA-6其他名称 胺鲜酯等
DA-6能提高植株体内叶绿素,蛋白质,核酸的含量和光合速率,提高过氧化物酶及硝酸还原酶的活性,促进植株的碳,氮代谢,增强植株对水肥的吸收和干物质的积累,调节体内水分平衡,增强作物,果树的抗病,抗旱,抗寒能力;延缓植株衰老,促进作物早熟、增产、提高作物的品质;从而达到增产,增质。
DA-6,是新发现的一种高效植物生长物质,对多种农作物具有显着的增产、抗逆、抗病,改善品质、早熟等功效,具有很高生物活性的化合物。它能与多种元素复配,还可以和杀菌剂复配使用,增强植物的抗病能力,提高杀菌效果;DA-6以它独特的多功能作用,在农业上得到广泛应用。 DA-6为白色或谈片粉状结晶体,含量在98%以上,可与多种农药、肥料复配使用,在弱酸性和中性介质中稳定。
DA-6单独使用以10-15PPM效果最好,即一克DA-6兑水70-100公斤。DA-6与肥料、杀菌剂、除草剂复配时以5PPM效果最好,每吨用量一般为产品稀释倍数的二百分之一。
复硝酚钠 其他名称
已被众多厂家制成2%、1.8%、0.9%、1.4%、0.7%、2.85%等水剂剂型,1.4%复硝酚可溶性粉剂等。
复硝酚钠是一种强力细胞赋活剂,与植物接触后能迅速渗透到植物体内,促进细胞的原生质流动,提高细胞活力。能加快生根速度,打破休眠,促进生长发育,防止落花落果,改善产品品质,提高产量,提高作物的抗病、抗虫、抗旱、抗涝、抗寒、抗盐碱、抗倒伏等抗逆能力。它广泛适用于粮食作物、经济作物、蔬菜、瓜果、果树、油料作物及花卉等。可在植物播种到收获期间的任何时期使用,可用于种子浸渍、苗床灌注、叶面喷洒和花蕾撒布等。由于它具有高效、低毒、无残留、适用作物范围广、无副作用、使用浓度范围宽等优点,已在世界上多个国家和地区推广应用。复硝酚钠还应用畜牧、渔业上,在提高肉、蛋、毛、皮产量和质量的同时,还能增强动物的免疫能力,预防多种疾病。
芸苔素内酯
是仿生植物内源激素-油菜素内酯人工合成物,芸苔素内酯的主要作用是,促进细胞分裂和伸长、生长;有利花粉授精,提高座果率;提高叶绿素含量,增加光合作用;增强植物的抗逆能力。另外,其与多种常用杀菌剂、化肥、植物生长调节剂混配应用,具有显着的协同效应和加成效应,在大多数情况下,能提高化肥的肥效和杀菌剂功效,降低农药药害;与各种植物生长调节剂或叶面肥的混配制剂在改进农作物品质,抗逆减灾方面具有极其广阔的开发前景和市场潜力,并且已引起国内外众多农药、化肥生产厂家和科研单位的重视。
好了,这次先到这里,下次再分享其他功效的调节剂。大家看完以后有什么感触?
只要用的对,这就是一个好东西,但是乱用,盲目的用,重复的用,就很容易造成“小老人”,让作物早衰。
(小默)
分享
1
上一篇: 扒一扒施用菌肥无效果的原因 下一篇: 教你六种自制有机肥方法
目录

推荐阅读

最新更新

忘记密码?

图形验证码